Sabtu, 01 Desember 2007
Peluruhan radioaktif adalah kumpulan beragam proses di mana sebuah inti atom yang tidak stabil memancarkan partikel subatomik (partikel radiasi). Peluruhan terjadi pada sebuah nukleus induk dan menghasilkan sebuah nukleus anak. Ini adalah sebuah proses acak sehingga sulit untuk memprediksi peluruhan sebuah atom.
Satuan internasional (SI) untuk pengukuran peluruhan radioaktif adalah becquerel (Bq). Jika sebuah material radioaktif menghasilkan 1 buah kejadian peluruhan tiap 1 detik, maka dikatakan material tersebut mempunyai aktivitas 1 Bq. Karena biasanya sebuah sampel material radiaktif mengandung banyak atom,1 becquerel akan tampak sebagai tingkat aktivitas yang rendah; satuan yang biasa digunakan adalah dalam orde gigabecquerels.
Pendahuluan
Neutron dan proton yang menyusun inti atom, that seperti halnya partikel-partikel lain, diatur oleh beberapa interaksi. Gaya nuklir kuat, yang tidak teramati pada skala makroskopik, merupakan gaya terkuat pada skala subatomik. Hukum Coulomb atau gaya elektrostatik juga mempunyai peranan yang berarti pada ukuran ini. Gaya nuklir lemah sedikit berpengaruh pada interaksi ini. Gaya gravitasi tidak berpengaruh pada proses nuklir.
Interaksi gaya-gaya ini pada inti atom terjadi dengan kompleksitas yang tinggi. Ada sifat yang dimiliki susunan partikel didalam inti atom, jika mereka sedikit saja bergeser dari posisinya, mereka dapat jatuh ke susunan energi yang lebih rendah. Mungkin bisa sedikit digambarkan dengan menara pasir yang kita buat di pantai: ketika gesekan yang terjadi antar pasir mampu menopang ketinggian menara, sebuah gangguan yang berasal dari luar dapat melepaskan gaya gravitasi dan membuat tower itu runtuh.
Keruntuhan menara (peluruhan) membutuhkan energi aktivasi tertentu. Pada kasus menara pasir, energi ini datang dari luar sistem, bisa dalam bentuk ditendang atau digeser tangan. Pada kasus peluruhan inti atom, energi aktivasi sudah tersedia dari dalam. Partikel mekanika kuantum tidak pernah dalam keadaan diam, mereka terus bergerak secara acak. Gerakan teratur pada partikel ini dapat membuat inti seketika tidak stabil. Hasil perubahan akan mempengaruhi susunan inti atom; sehingga hal ini termasuk dalam reaksi nuklir, berlawanan dengan reaksi kimia yang hanya melibatkan perubahan susunan elektron diluar inti atom.
(Beberapa reaksi nuklir melibatkan sumber energi yang berasal dari luar, dalam bentuk "tumbukkan" dengan partikel luar misalnya. Akan tetapi, reaksi semacam ini tidak dipertimbangkan sebagai peluruhan. Reaksi seperti ini biasanya akan dimasukan dalam fisi nuklir/fusi nuklir.
Penemuan
Radioaktivitas pertama kali ditemukan pada tahun 1896 oleh ilmuwan Perancis Henri Becquerel ketika sedang bekerja dengan material fosforen. Material semacam ini akan berpendar di tempat gelap setelah sebelumnya mendapat paparan cahaya, dan dia berfikir pendaran yang dihasilkan tabung katoda oleh sinar-X mungkin berhubungan dengan fosforesensi. Karenanya ia membungkus sebuah pelat foto dengan kertas hitam dan menempatkan beragam material fosforen diatasnya. Kesemuanya tidak menunjukkan hasil sampai ketika ia menggunakan garam uranium. Terjadi bintik hitam pekat pada pelat foto ketika ia menggunakan garam uranium tesebut.
Tetapi kemudian menjadi jelas bahwa bintik hitam pada pelat bukan terjadi karena peristiwa fosforesensi, pada saat percobaan, material dijaga pada tempat yang gelap. Juga, garam uranium nonfosforen dan bahkan uranium metal dapat juga menimbulkan efek bintik hitam pada pelat.
Pada awalnya tampak bentuk radiasi yang baru ditemukan ini mirip dengan penemuan sinar-X. Akan tetapi, penelitian selanjutnya yang dilakukan oleh Becquerel, Marie Curie, Pierre Curie, Ernest Rutherford dan ilmuwan lainnya menemukan bahwa radiaktivitas jauh lebih rumit ketimbang sinar-X. Beragam jenis peluruhan bisa terjadi.
Sebagai contoh, ditemukan bahwa medan listrik atau medan magnet dapat memecah emisi radiasi menjadi tiga sinar. Demi memudahkan penamaan, sinar-sinar tersebut diberi nama sesuai dengan alfabet yunani yakni alpha, beta, dan gamma, nama-nama tersebut masih bertahan hingga kini. Kemudian dari arah gaya elektromagnet, diketahui bahwa sinar alfa mengandung muatan positif, sinar beta bermuatan negatif, dan sinar gamma bermuatan netral. Dari besarnya arah pantulan, juga diketahui bahwa partikel alfa jauh lebih berat ketimbang partikel beta. Dengan melewatkan sinar alfa melalui membran gelas tipis dan menjebaknya dalam sebuah tabung lampu neon membuat para peneliti dapat mempelajari spektrum emisi dari gas yang dihasilkan, dan membuktikan bahwa partikel alfa kenyataannya adalah sebuah inti atom helium. Percobaan lainnya menunjukkan kemiripan antara radiasi beta dengan sinar katoda serta kemiripan radiasi gamma dengan sinar-X.
Para peneliti ini juga menemukan bahwa banyak unsur kimia lainnya yang mempunyai isotop radioaktif. Radioaktivitas juga memandu Marie Curie untuk mengisolasi radium dari barium; dua buah unsur yang memiliki kemiripan sehingga sulit untuk dibedakan.
Bahaya radioaktivitas dari radiasi tidak serta merta diketahui. Efek akut dari radiasi pertama kali diamati oleh insinyur listrik Amerika Elihu Thomson yang secara terus menerus mengarahkan sinar-X ke jari-jarinya pada 1896. Dia menerbitkan hasil pengamatannya terkait dengan efek bakar yang dihasilkan. Bisa dikatakan ia menemukan bidang ilmu fisika medik (health physics); untungnya luka tersebut sembuh dikemudian hari.
Efek genetis radiasi baru diketahui jauh dikemudian hari. Pada tahun 1927 Hermann Joseph Muller menerbitkan penelitiannya yang menunjukkan efek genetis radiasi. Pada tahun 1947 dimendapat penghargaan hadiah Nobel untuk penemuannya ini.
Sebelum efek biologi radiasi diketahui, banyak perusahan kesehatan yang memasarkan obat paten yang mengandung bahan radioaktif; salah satunya adalah penggunaan radium pada perawatan enema. Marie Curie menentang jenis perawatan ini, ia memperingatkan efek radiasai pada tubuh manusia belum benar-benar diketahui (Curie dikemudian hari meninggal akibat Anemia Aplastik, yang hampir dipastikan akibat lamanya ia terpapar Radium). Pada tahun 1930-an produk pengobatan yang mengandung bahan radioaktif tidak ada lagi dipasaran bebas.
Mode Peluruhan
Sebuah inti radioaktif dapat melakukan sejumlah reaksi peluruhan yang berbeda. Reraksi-reaksi tersebut disarikan dalam tabel berikut ini. Sebuah inti atom dengan muatan (nomor atom) Z dan berat atom A ditampilkan dengan (A, Z).
elektron dan sebuah antineutrino || (A, Z+1)
Peluruhan radioaktif berakibat pada pengurangan massa, dimana menurut hukum relativitas khusus massa yang hilang diubah menjadi energi (pelepasan energi) sesuai dengan persamaan E = mc. Energi ini dilepaskan dalam bentuk energi kinetik dari partikel yang dipancarkan.
Rantai peluruhan dan mode peluruhan ganda
Banyak inti radioaktif yang mempunyai mode peluruhan berbeda. Sebagai contoh adalah Bismuth-212, yang mempunyai tiga.
Inti anak yang dihasilkan dari proses peluruhan biasanya juga tidak stabil, kadang lebih tidak stbail dari induknya. Bila kasus ini terjadi, inti anak tadi akan meluruh lagi. Proses kejadian peluruhan berurutan yang menghasilkan hasil akhir inti stabil, disebut rantai peluruhan.
Keberadaan dan penerapan
Menurut teori Big Bang, isotop radioaktif dari unsur teringan (H, He, dan Li) dihasilkan tidak berapa lama seteleah alam semesta terbentuk. Tetapi, inti-inti ini sangat tidak stabil sehingga tidak ada dari ketiganya yang masih ada saat ini. Karenanya sebagian besar inti radioaktif yang ada saat ini relatif berumur muda, yang terbentuk di bintang (khususnya supernova) dan selama interaksi antara isotop stabil dan partikel berenergi. Sebagai contoh, karbon-14, inti radioaktif yang mempunyai umur-paruh hanya 5730 tahun, secara terus menerus terbentuk di atmosfer atas bumi akibat interaksi antara sinar kosmik dan Nitrogen.
Peluruhan radioaktif telah digunakan dalam teknik perunut radioaktif, yang digunakan untuk mengikuti perjalanan subtansi kimia di dalam sebuah sistem yang kompleks (seperti organisme hidup misalnya). Sebuah sampel dibuat dengan atom tidak stsbil konsentrasi tinggi. Keberadaan substansi di satu atau lebih bagian sistem diketahui dengan mendeteksi lokasi terjadinya peluruhan.
Dengan dasar bahwa proses peluruhan radioaktif adalah proses acak (bukan proses chaos), proses peluruhan telah digunakan dalam perangkat keras pembangkit bilangan-acak yang merupakan perangkat dalam meperkirakan umur absolutmaterial geologis dan bahan organik.